Membranoproliferative glomerulonephritis pathophysiology

Jump to navigation Jump to search

Membranoproliferative glomerulonephritis Microchapters


Patient Information


Historical Perspective




Differentiating Membranoproliferative glomerulonephritis from other Diseases

Epidemiology and Demographics

Risk Factors


Natural History, Complications and Prognosis


Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings


Chest X Ray



Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies


Medical Therapy


Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Membranoproliferative glomerulonephritis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Membranoproliferative glomerulonephritis pathophysiology

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical

US National Guidelines Clearinghouse

NICE Guidance

FDA on Membranoproliferative glomerulonephritis pathophysiology

CDC on Membranoproliferative glomerulonephritis pathophysiology

Membranoproliferative glomerulonephritis pathophysiology in the news

Blogs on Membranoproliferative glomerulonephritis pathophysiology

Directions to Hospitals Treating Membranoproliferative glomerulonephritis

Risk calculators and risk factors for Membranoproliferative glomerulonephritis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Ali Poyan Mehr, M.D. [2] Associate Editor(s)-in-Chief: Olufunmilola Olubukola M.D.[3],Nazia Fuad M.D.


MPGN membrano proliferative glomerulonephritis, also known as mesangiocapillary glomerulonephritis, is a glomerular injury on light microscopy that is characterized by mesangial hypercellularity, endocapillary proliferation, and double-contour formation along the glomerular capillary walls. "MPGN" includes two characteristic histologic changes:Thickened glomerular basement membrane (GBM) due to deposition of immune complexes and/or complement factors, intrusion of the mesangial cells and other cellular elements between the glomerular basement membrane and the endothelial cells, and new basement membrane formation. Mesangial and endocapillary cellularity is increased resulting in lobular appearance of the glomerular tuft. Proliferation of mesangial cells and circulating monocytes results in increased cellularity.Two mechanisms are involved in the pathogenesis of MPGN,Immune complex deposition leading to activation of complement (immune complex-mediated) and dysregulation and persistent activation of the alternative complement pathway.


  • Type III MPGN:
    • It is thought to be due to a slow-acting nephritic factor that stabilizes a properdin dependent C5-convertase, (Cb3)2BbP.
    • (Cb3)2BbP activates the terminal pathway of the complement system.
    • This nephritic factor has not been reported in healthy subjects.unnlike C3NeF.
    • In addition, the deposits present in renal biopsies of patients with type III MPGN are closely associated with the circulating nephritic factor-stabilized convertase and with hypocomplementemia suggesting that NeFt is fundamental to the pathogenesis of type III MPGN.
  • Cryoglobulinemic MPGN :

Histologic Findings

Light microscopy:

Source:By Nephron [CC BY-SA 3.0 ( or GFDL (], from Wikimedia Commons


  1. Sethi S, Fervenza FC (July 2011). "Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification". Semin. Nephrol. 31 (4): 341–8. doi:10.1016/j.semnephrol.2011.06.005. PMID 21839367.
  2. Glassock, Richard J. (2010). "The Pathogenesis of Idiopathic Membranous Nephropathy: A 50-Year Odyssey". American Journal of Kidney Diseases. 56 (1): 157–167. doi:10.1053/j.ajkd.2010.01.008. ISSN 0272-6386.

Template:WH Template:WS