Difference between revisions of "Gill"

Jump to: navigation, search
(Vertebrate gills)
 
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Cleanup|date=February 2007}}
+
{{SI}}
{{otheruses}}
+
 
 +
 
 
A '''gill''' is a [[respiration organ]] that functions for the extraction of [[oxygen]] from [[water]] and the excretion of [[carbon dioxide]]. Unlike many small aquatic animals, which can absorb oxygen through the entire surface of their bodies, more complex aquatic organisms have gills specially formed to present an adequate [[surface area]] to the external environment. Gills are usually thin plates of tissue, branches, or slender tufted [[Process (anatomy)|processes]] and, with the exception of some aquatic [[insect]]s, they contain [[blood]] or [[body cavity|coelomic]] fluid, which exchanges gases through their thin walls. Oxygen is carried by the blood to other parts of the body. Carbon dioxide passes from the blood through the thin gill tissue into the water. Gills or gill-like organs, located in different parts of the body, are found in various groups of animalia. These include mollusks, crustaceans, insects, fish, and amphibians.  
 
A '''gill''' is a [[respiration organ]] that functions for the extraction of [[oxygen]] from [[water]] and the excretion of [[carbon dioxide]]. Unlike many small aquatic animals, which can absorb oxygen through the entire surface of their bodies, more complex aquatic organisms have gills specially formed to present an adequate [[surface area]] to the external environment. Gills are usually thin plates of tissue, branches, or slender tufted [[Process (anatomy)|processes]] and, with the exception of some aquatic [[insect]]s, they contain [[blood]] or [[body cavity|coelomic]] fluid, which exchanges gases through their thin walls. Oxygen is carried by the blood to other parts of the body. Carbon dioxide passes from the blood through the thin gill tissue into the water. Gills or gill-like organs, located in different parts of the body, are found in various groups of animalia. These include mollusks, crustaceans, insects, fish, and amphibians.  
  
 
== Invertebrate gills ==
 
== Invertebrate gills ==
  
Respiration in [[Echinodermata]] (includes [[starfish]] and [[sea urchin]]s) is done through a very primitive version of gills called papulli, thin protuberances on the surface of the body containing diverticula of the water [[vascular system]]. In [[crustacean]]s, [[mollusk]]s and some insects, they are tufted or plate-like structures at the surface of the body in which blood circulates.  
+
Respiration in Echinodermata (includes starfish and sea urchins) is done through a very primitive version of gills called papulli, thin protuberances on the surface of the body containing diverticula of the water [[vascular system]]. In crustaceans, mollusks and some insects, they are tufted or plate-like structures at the surface of the body in which blood circulates.  
  
The gills of other insects are of the tracheal kind and also include both thin plates and tufted structures, and, in the [[larva]]l [[dragon fly]], the wall of the caudal end of the [[Gastrointestinal tract|alimentary tract]] ([[rectum]]) is richly supplied with tracheae as a rectal gill. Water pumped into and out of the rectum provide oxygen to the closed tracheae. In the aquatic insects, a unique type of respiratory organ is used, the [[invertebrate trachea|trachea]]l gill, which contains air tubes. The oxygen in these tubes is renewed through the gills.  
+
The gills of other insects are of the tracheal kind and also include both thin plates and tufted structures, and, in the larval dragon fly, the wall of the caudal end of the [[Gastrointestinal tract|alimentary tract]] ([[rectum]]) is richly supplied with tracheae as a rectal gill. Water pumped into and out of the rectum provide oxygen to the closed tracheae. In the aquatic insects, a unique type of respiratory organ is used, the [[invertebrate trachea|trachea]]l gill, which contains air tubes. The oxygen in these tubes is renewed through the gills.  
  
 
=== Physical gills ===
 
=== Physical gills ===
'''Physical gills''' are a type of structural adaptation common among some types of aquatic [[insect]]s, in which atmospheric oxygen is held within an area into which the [[spiracle]]s open. The structure (often called a [[plastron]]) typically consists of dense patches of [[hydrophobic]] [[setae]] on the body, which prevent water entry into the spiracles. The physical properties of the interface between the trapped air bubble and the surrounding water function so as to accomplish gas exchange through the spriacles, almost as if the insect were in atmospheric air. [[Carbon dioxide]] diffuses out into the surrounding water due to its high [[solubility]], while [[oxygen]] diffuses into the bubble, as the concentration within the bubble has been reduced by [[Respiration (physiology)|respiration]], and nitrogen also diffuses out as its tension has been increased. Oxygen diffuses into the bubble at a higher rate than Nitrogen diffuses out. However, water surrounding the insect can become oxygen-depleted if there is no [[water movement]], so many aquatic insects in still water actively direct a flow of water over their bodies.
+
'''Physical gills''' are a type of structural adaptation common among some types of aquatic insects, in which atmospheric oxygen is held within an area into which the spiracles open. The structure (often called a plastron) typically consists of dense patches of [[hydrophobic]] setae on the body, which prevent water entry into the spiracles. The physical properties of the interface between the trapped air bubble and the surrounding water function so as to accomplish gas exchange through the spriacles, almost as if the insect were in atmospheric air. Carbon dioxide diffuses out into the surrounding water due to its high solubility, while [[oxygen]] diffuses into the bubble, as the concentration within the bubble has been reduced by [[Respiration (physiology)|respiration]], and nitrogen also diffuses out as its tension has been increased. Oxygen diffuses into the bubble at a higher rate than Nitrogen diffuses out. However, water surrounding the insect can become oxygen-depleted if there is no water movement, so many aquatic insects in still water actively direct a flow of water over their bodies.
  
The physical gill mechanism allows  aquatic insects with plastrons to remain constantly submerged. Examples include many [[beetle]]s in the family [[Elmidae]], aquatic [[weevil]]s, and [[true bug]]s in the family [[Aphelocheiridae]].
+
The physical gill mechanism allows  aquatic insects with plastrons to remain constantly submerged. Examples include many beetles in the family Elmidae, aquatic weevils, and true bugs in the family Aphelocheiridae.
  
 
== Vertebrate gills ==
 
== Vertebrate gills ==
[[Image:Tuna Gills in Situ 01.jpg|thumb|The red gills inside a detached [[tuna]] head (viewed from behind)]]
+
[[Image:693px-Tuna Gills in Situ 01.jpg|thumb|The red gills inside a detached [[tuna]] head (viewed from behind)]]
Gills of [[vertebrate]]s are developed in the walls of the [[pharynx]] along a series of gill slits opening to the exterior. In fish, the gills are located on both sides of the pharynx. Gills are made of filaments which help increase surface area for oxygen exchange. In bony fish, the gills are covered by a bony cover called an [[operculum (fish)|operculum]]. When a fish breathes, it opens its mouth at regular times and draws in a mouthful of water. It then draws the sides of its throat together, forcing the water through the gill openings. The water passes over the gills on the outside. Valves inside the mouth keep the water from escaping through the mouth again. The operculum can be very important in adjusting the pressure of water inside of the pharynx to allow proper ventilation of the gills. Lampreys and sharks lack an operculum, they have multiple gill openings. Also, they must use different methods to force water over the gills. In sharks and rays, this ventilation of the gills is achieved either by the use of [[spiracle]]s or ram ventilation (ventilation by constantly swimming).
+
Gills of vertebrates are developed in the walls of the [[pharynx]] along a series of gill slits opening to the exterior. In fish, the gills are located on both sides of the pharynx. Gills are made of filaments which help increase surface area for oxygen exchange. In bony fish, the gills are covered by a bony cover called an operculum. When a fish breathes, it opens its mouth at regular times and draws in a mouthful of water. It then draws the sides of its throat together, forcing the water through the gill openings. The water passes over the gills on the outside. Valves inside the mouth keep the water from escaping through the mouth again. The operculum can be very important in adjusting the pressure of water inside of the pharynx to allow proper ventilation of the gills. Lampreys and sharks lack an operculum, they have multiple gill openings. Also, they must use different methods to force water over the gills. In sharks and rays, this ventilation of the gills is achieved either by the use of spiracles or ram ventilation (ventilation by constantly swimming).
  
In most species, a [[countercurrent exchange]] system is employed to enhance the diffusion of substances in and out of the gill, with blood and water flowing in opposite directions to each other. Water taken into the mouth passes out of the slits, bathing the gills as it passes.  
+
In most species, a countercurrent exchange system is employed to enhance the diffusion of substances in and out of the gill, with blood and water flowing in opposite directions to each other. Water taken into the mouth passes out of the slits, bathing the gills as it passes.  
  
Some [[fish]] utilize the gills for the excretion of [[electrolyte]]s. Gills' large surface area tends to create a problem for fish seeking to regulate the [[osmolarity]] of their internal fluids.  Saltwater is less dilute than these internal fluids; as a consequence, saltwater fish lose large quantities of water osmotically through their gills.  To regain the water, they drink large amounts of [[seawater]] and excrete the [[salt]].  Freshwater is more dilute than the internal fluids of fish, however, so freshwater fish gain water osmotically through their gills.
+
Some fish utilize the gills for the excretion of electrolytes. Gills' large surface area tends to create a problem for fish seeking to regulate the osmolarity of their internal fluids.  Saltwater is less dilute than these internal fluids; as a consequence, saltwater fish lose large quantities of water osmotically through their gills.  To regain the water, they drink large amounts of seawater and excrete the salt.  Freshwater is more dilute than the internal fluids of fish, however, so freshwater fish gain water osmotically through their gills.
  
The gill slits of fish are believed to be the evolutionary ancestors of the [[tonsil]]s, [[thymus gland]], and [[Eustachian tube]]s, as well as many other structures derived from the embryonic [[branchial pouch]]es. In some [[amphibia]]ns, the gills occupy the same position on the body but protrude as external tufts.  
+
The gill slits of fish are believed to be the evolutionary ancestors of the [[tonsil]]s, [[thymus gland]], and [[Eustachian tube]]s, as well as many other structures derived from the embryonic branchial pouches. In some amphibians, the gills occupy the same position on the body but protrude as external tufts.  
[[image:Smooth Newt larva (aka).jpg|thumb|An [[Alpine newt]] larva showing the gills, which flare just behind the head]]
+
[[image:800px-Smooth Newt larva.jpg|thumb|An [[Alpine newt]] larva showing the gills, which flare just behind the head]]
  
 
===Branchia===
 
===Branchia===
'''Branchia''' (pl. '''branchiæ''') is the name given by the [[Ancient Greek]] naturalists to the gills of [[fish]]. [[Galen]] observed that they are full of little [[foramina]], big enough to admit gasses, but too fine to give passage to water. [[Pliny the Elder]] held that fish respired by their gills, but observed that [[Aristotle]] was of another opinion.<ref>{{1728}}</ref>
+
'''Branchia''' (pl. '''branchiæ''') is the name given by the Ancient Greek naturalists to the gills of fish. Galen observed that they are full of little foramina, big enough to admit gasses, but too fine to give passage to water. Pliny the Elder held that fish respired by their gills, but observed that Aristotle was of another opinion.<ref>{{1728}}</ref>
  
The word ''branchia'' comes from the [[Greek language|Greek]] {{polytonic|βράγχια}}, "gills", plural of {{polytonic|βράγχιον}} (in singular, meaning a [[fin]]).<ref>"Branchia". ''Oxford English Dictionary''. Oxford University Press. 2nd Ed. 1989.</ref>
+
The word ''branchia'' comes from the Greek {{polytonic|βράγχια}}, "gills", plural of {{polytonic|βράγχιον}} (in singular, meaning a [[fin]]).<ref>"Branchia". ''Oxford English Dictionary''. Oxford University Press. 2nd Ed. 1989.</ref>
  
 
==References==
 
==References==
<references />
+
{{reflist|2}}
  
 
==See also==
 
==See also==
 
*[[Aquatic respiration]]
 
*[[Aquatic respiration]]
*[[Book lung]]
+
*Book lung
 
*[[Lung]]
 
*[[Lung]]
 +
  
  
Line 45: Line 47:
 
[[Category:Animal anatomy]]
 
[[Category:Animal anatomy]]
  
[[ca:Brànquia]]
 
[[cs:Žábry]]
 
[[da:Gælle]]
 
 
[[de:Kieme]]
 
[[de:Kieme]]
[[es:Branquia]]
 
[[eo:Branko]]
 
[[fr:Branchie]]
 
[[hr:Škrge]]
 
[[io:Brankio]]
 
[[it:Branchia]]
 
[[he:זימים]]
 
[[lt:Žiauna]]
 
[[mk:Жабри]]
 
[[nl:Kieuw]]
 
[[ja:えら]]
 
[[no:Gjelle]]
 
[[nn:Gjelle]]
 
 
[[pl:Skrzela (anatomia)]]
 
[[pl:Skrzela (anatomia)]]
 
[[pt:Brânquia]]
 
[[pt:Brânquia]]
 
[[ru:Жабры]]
 
[[ru:Жабры]]
[[simple:Gill]]
 
[[sr:Шкрге]]
 
 
[[fi:Kidukset]]
 
[[fi:Kidukset]]
 
[[sv:Gälar]]
 
[[sv:Gälar]]
 
[[zh:鳃]]
 
[[zh:鳃]]
 +
 +
{{WH}}
 +
{{WikiDoc Sources}}

Latest revision as of 17:51, 4 September 2012

WikiDoc Resources for Gill

Articles

Most recent articles on Gill

Most cited articles on Gill

Review articles on Gill

Articles on Gill in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Gill

Images of Gill

Photos of Gill

Podcasts & MP3s on Gill

Videos on Gill

Evidence Based Medicine

Cochrane Collaboration on Gill

Bandolier on Gill

TRIP on Gill

Clinical Trials

Ongoing Trials on Gill at Clinical Trials.gov

Trial results on Gill

Clinical Trials on Gill at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Gill

NICE Guidance on Gill

NHS PRODIGY Guidance

FDA on Gill

CDC on Gill

Books

Books on Gill

News

Gill in the news

Be alerted to news on Gill

News trends on Gill

Commentary

Blogs on Gill

Definitions

Definitions of Gill

Patient Resources / Community

Patient resources on Gill

Discussion groups on Gill

Patient Handouts on Gill

Directions to Hospitals Treating Gill

Risk calculators and risk factors for Gill

Healthcare Provider Resources

Symptoms of Gill

Causes & Risk Factors for Gill

Diagnostic studies for Gill

Treatment of Gill

Continuing Medical Education (CME)

CME Programs on Gill

International

Gill en Espanol

Gill en Francais

Business

Gill in the Marketplace

Patents on Gill

Experimental / Informatics

List of terms related to Gill


A gill is a respiration organ that functions for the extraction of oxygen from water and the excretion of carbon dioxide. Unlike many small aquatic animals, which can absorb oxygen through the entire surface of their bodies, more complex aquatic organisms have gills specially formed to present an adequate surface area to the external environment. Gills are usually thin plates of tissue, branches, or slender tufted processes and, with the exception of some aquatic insects, they contain blood or coelomic fluid, which exchanges gases through their thin walls. Oxygen is carried by the blood to other parts of the body. Carbon dioxide passes from the blood through the thin gill tissue into the water. Gills or gill-like organs, located in different parts of the body, are found in various groups of animalia. These include mollusks, crustaceans, insects, fish, and amphibians.

Invertebrate gills

Respiration in Echinodermata (includes starfish and sea urchins) is done through a very primitive version of gills called papulli, thin protuberances on the surface of the body containing diverticula of the water vascular system. In crustaceans, mollusks and some insects, they are tufted or plate-like structures at the surface of the body in which blood circulates.

The gills of other insects are of the tracheal kind and also include both thin plates and tufted structures, and, in the larval dragon fly, the wall of the caudal end of the alimentary tract (rectum) is richly supplied with tracheae as a rectal gill. Water pumped into and out of the rectum provide oxygen to the closed tracheae. In the aquatic insects, a unique type of respiratory organ is used, the tracheal gill, which contains air tubes. The oxygen in these tubes is renewed through the gills.

Physical gills

Physical gills are a type of structural adaptation common among some types of aquatic insects, in which atmospheric oxygen is held within an area into which the spiracles open. The structure (often called a plastron) typically consists of dense patches of hydrophobic setae on the body, which prevent water entry into the spiracles. The physical properties of the interface between the trapped air bubble and the surrounding water function so as to accomplish gas exchange through the spriacles, almost as if the insect were in atmospheric air. Carbon dioxide diffuses out into the surrounding water due to its high solubility, while oxygen diffuses into the bubble, as the concentration within the bubble has been reduced by respiration, and nitrogen also diffuses out as its tension has been increased. Oxygen diffuses into the bubble at a higher rate than Nitrogen diffuses out. However, water surrounding the insect can become oxygen-depleted if there is no water movement, so many aquatic insects in still water actively direct a flow of water over their bodies.

The physical gill mechanism allows aquatic insects with plastrons to remain constantly submerged. Examples include many beetles in the family Elmidae, aquatic weevils, and true bugs in the family Aphelocheiridae.

Vertebrate gills

The red gills inside a detached tuna head (viewed from behind)

Gills of vertebrates are developed in the walls of the pharynx along a series of gill slits opening to the exterior. In fish, the gills are located on both sides of the pharynx. Gills are made of filaments which help increase surface area for oxygen exchange. In bony fish, the gills are covered by a bony cover called an operculum. When a fish breathes, it opens its mouth at regular times and draws in a mouthful of water. It then draws the sides of its throat together, forcing the water through the gill openings. The water passes over the gills on the outside. Valves inside the mouth keep the water from escaping through the mouth again. The operculum can be very important in adjusting the pressure of water inside of the pharynx to allow proper ventilation of the gills. Lampreys and sharks lack an operculum, they have multiple gill openings. Also, they must use different methods to force water over the gills. In sharks and rays, this ventilation of the gills is achieved either by the use of spiracles or ram ventilation (ventilation by constantly swimming).

In most species, a countercurrent exchange system is employed to enhance the diffusion of substances in and out of the gill, with blood and water flowing in opposite directions to each other. Water taken into the mouth passes out of the slits, bathing the gills as it passes.

Some fish utilize the gills for the excretion of electrolytes. Gills' large surface area tends to create a problem for fish seeking to regulate the osmolarity of their internal fluids. Saltwater is less dilute than these internal fluids; as a consequence, saltwater fish lose large quantities of water osmotically through their gills. To regain the water, they drink large amounts of seawater and excrete the salt. Freshwater is more dilute than the internal fluids of fish, however, so freshwater fish gain water osmotically through their gills.

The gill slits of fish are believed to be the evolutionary ancestors of the tonsils, thymus gland, and Eustachian tubes, as well as many other structures derived from the embryonic branchial pouches. In some amphibians, the gills occupy the same position on the body but protrude as external tufts.

An Alpine newt larva showing the gills, which flare just behind the head

Branchia

Branchia (pl. branchiæ) is the name given by the Ancient Greek naturalists to the gills of fish. Galen observed that they are full of little foramina, big enough to admit gasses, but too fine to give passage to water. Pliny the Elder held that fish respired by their gills, but observed that Aristotle was of another opinion.[1]

The word branchia comes from the Greek βράγχια, "gills", plural of βράγχιον (in singular, meaning a fin).[2]

References

  1. This article incorporates content from the 1728 Cyclopaedia, a publication in the public domain.
  2. "Branchia". Oxford English Dictionary. Oxford University Press. 2nd Ed. 1989.

See also

de:Kieme fi:Kidukset sv:Gälar



Linked-in.jpg