VEGF receptors

Jump to: navigation, search
fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor receptor)
Identifiers
SymbolFLT1
Alt. symbolsFLT
Entrez2321
HUGO3763
OMIM165070
RefSeqNM_002019
UniProtP17948
Other data
EC number2.7.1.112
LocusChr. 13 q12
kinase insert domain receptor (a type III receptor tyrosine kinase)
Identifiers
SymbolKDR
Alt. symbolsFLK1, VEGFR, VEGFR2, CD309
Entrez3791
HUGO6307
OMIM191306
RefSeqNM_002253
UniProtP35968
Other data
EC number2.7.1.112
LocusChr. 4 q11-q12
fms-related tyrosine kinase 4
Identifiers
SymbolFLT4
Alt. symbolsVEGFR3, PCL
Entrez2324
HUGO3767
OMIM136352
RefSeqNM_002020
UniProtP35916
Other data
EC number2.7.1.112
LocusChr. 5 q34-q35

Receptors for Vascular Endothelial Growth Factor: VEGF.

VEGF biology

Vascular endothelial growth factor (VEGF) is an important signaling protein involved in both vasculogenesis (the formation of the embryonic circulatory system) and angiogenesis (the growth of blood vessels from pre-existing vasculature). As its name implies, VEGF activity is restricted mainly to cells of the vascular endothelium, although it does have effects on a limited number of other cell types (e.g. stimulation monocyte/macrophage migration). In vitro, VEGF has been shown to stimulate endothelial cell mitogenesis and cell migration. VEGF also enhances microvascular permeability and is sometimes referred to as vascular permeability factor.

VEGF splice variants are released from cells as glycosylated disulfide-bonded homodimers. Structurally VEGF belongs to the PDGF family of cystine-knot growth factors. Subsequently, several closely-related proteins were discovered (Placenta growth factor (PlGF), VEGF-B, VEGF-C and VEGF-D) which together comprise the VEGF sub-family of growth factors. VEGF is sometimes referred to as VEGF-A to differentiate it from these related growth factors. A number of VEGF-related proteins have also been discovered encoded by viruses (VEGF-E) and in the venom of some snakes (VEGF-F).

Receptor biology

All members of the VEGF family stimulate cellular responses by binding to tyrosine kinase receptors (the VEGFRs) on the cell surface, causing them to dimerize and become activated through transphosphorylation. The VEGF receptors have an extracellular portion consisting of 7 immunoglobulin-like domains, a single transmembrane spanning region and an intracellular portion containing a split tyrosine-kinase domain. VEGF-A binds to VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1). VEGFR-2 appears to mediate almost all of the known cellular responses to VEGF. The function of VEGFR-1 is less well defined, although it is thought to modulate VEGFR-2 signaling. Another function of VEGFR-1 may be to act as a dummy/decoy receptor, sequestering VEGF from VEGFR-2 binding (this appears to be particularly important during vasculogenesis in the embryo). A third receptor has been discovered (VEGFR-3), however, VEGF-A is not a ligand for this receptor. VEGFR-3 mediates lymphangiogenesis in response to VEGF-C and VEGF-D.

External links




Linked-in.jpg