Lapatinib

Jump to: navigation, search

{{DrugProjectFormSinglePage |authorTag=Aparna Vuppala, M.B.B.S. [1] |genericName=Lapatinib |aOrAn=an |drugClass=tyrosine kinase inhibitor |indicationType=treatment |indication=for the treatment of patients with advanced or metastatic breast cancer whose tumors overexpress HER2 and who have received prior therapy including an anthracycline, a taxane, and trastuzumab. for the treatment of postmenopausal women with hormone receptor-positive metastatic breast cancer that overexpresses the HER2 receptor for whom hormonal therapy is indicated. |hasBlackBoxWarning=Yes |adverseReactions=gastrointestinal (diarrhea, nausea, vomiting),dermatologic (palmar-plantar erythrodysesthesia and rash), and fatigue.Decreases in Left Ventricular Ejection Fraction,Hepatotoxicity,Interstitial Lung Disease/Pneumonitis,Skin and Subcutaneous Tissue Disorders |blackBoxWarningTitle=WARNING |blackBoxWarningBody=HEPATOTOXICITY

  • Hepatotoxicity has been observed in clinical trials and postmarketing experience. The hepatotoxicity may be severe and deaths have been reported. Causality of the deaths is uncertain


|fdaLIADAdult=*Lapatinib® is indicated in combination with:

Recommended Dosing
  • HER2-Positive Metastatic Breast Cancer: The recommended dose of Lapatinib is 1,250 mg given orally once daily on Days 1-21 continuously in combination with capecitabine 2,000 mg/m2/day (administered orally in 2 doses approximately 12 hours apart) on Days 1-14 in a repeating 21-day cycle. Lapatinib should be taken at least one hour before or one hour after a meal. The dose of Lapatinib should be once daily (5 tablets administered all at once); dividing the daily dose is not recommended . Capecitabine should be taken with food or within 30 minutes after food. If a day’s dose is missed, the patient should not double the dose the next day. Treatment should be continued until disease progression or unacceptable toxicity occurs.
  • Hormone Receptor-Positive, HER2-Positive Metastatic Breast Cancer: The recommended dose of Lapatinib is 1,500 mg given orally once daily continuously in combination with letrozole. When coadministered with Lapatinib, the recommended dose of letrozole is 2.5 mg once daily. Lapatinib should be taken at least one hour before or one hour after a meal. The dose of Lapatinib should be once daily (6 tablets administered all at once); dividing the daily dose is not recommended.
Dose Modification Guidelines
  • Cardiac Events: Lapatinib should be discontinued in patients with a decreased left ventricular ejection fraction (LVEF) that is Grade 2 or greater by National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE v3) and in patients with an LVEF that drops below the institution’s lower limit of normal. Lapatinib in combination with capecitabine may be restarted at a reduced dose (1,000 mg/day) and in combination with letrozole may be restarted at a reduced dose of 1,250 mg/day after a minimum of 2 weeks if the LVEF recovers to normal and the patient is asymptomatic.
  • Hepatic Impairment: Patients with severe hepatic impairment (Child-Pugh Class C) should have their dose of Lapatinib reduced. A dose reduction from 1,250 mg/day to 750 mg/day (HER2-positive metastatic breast cancer indication) or from 1,500 mg/day to 1,000 mg/day (hormone receptor-positive, HER2-positive breast cancer indication) in patients with severe hepatic impairment is predicted to adjust the area under the curve (AUC) to the normal range and should be considered. However, there are no clinical data with this dose adjustment in patients with severe hepatic impairment.
  • Diarrhea: Lapatinib should be interrupted in patients with diarrhea which is NCI CTCAE Grade 3 or Grade 1 or 2 with complicating features (moderate to severe abdominal cramping, nausea or vomiting ≥NCI CTCAE Grade 2, decreased performance status, fever, sepsis, neutropenia, frank bleeding, or dehydration). Lapatinib may be reintroduced at a lower dose (reduced from 1,250 mg/day to 1,000 mg/day or from 1,500 mg/day to 1,250 mg/day) when diarrhea resolves to Grade 1 or less. Lapatinib should be permanently discontinued in patients with diarrhea which is NCI CTCAE Grade 4
  • Concomitant Strong CYP3A4 Inhibitors: The concomitant use of strong CYP3A4 inhibitors should be avoided (e.g., ketoconazole, itraconazole, clarithromycin, atazanavir, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, voriconazole). Grapefruit may also increase plasma concentrations of lapatinib and should be avoided. If patients must be coadministered a strong CYP3A4 inhibitor, based on pharmacokinetic studies, a dose reduction to 500 mg/day of lapatinib is predicted to adjust the lapatinib AUC to the range observed without inhibitors and should be considered. However, there are no clinical data with this dose adjustment in patients receiving strong CYP3A4 inhibitors. If the strong inhibitor is discontinued, a washout period of approximately 1 week should be allowed before the lapatinib dose is adjusted upward to the indicated dose
  • Concomitant Strong CYP3A4 Inducers: The concomitant use of strong CYP3A4 inducers should be avoided (e.g., dexamethasone, phenytoin, carbamazepine, rifampin, rifabutin, rifapentin, phenobarbital, St. John’s wort). If patients must be coadministered a strong CYP3A4 inducer, based on pharmacokinetic studies, the dose of lapatinib should be titrated gradually from 1,250 mg/day up to 4,500 mg/day (HER2-positive metastatic breast cancer indication) or from 1,500 mg/day up to 5,500 mg/day (hormone receptor-positive, HER2-positive breast cancer indication) based on tolerability. This dose of lapatinib is predicted to adjust the lapatinib AUC to the range observed without inducers and should be considered. However, there are no clinical data with this dose adjustment in patients receiving strong CYP3A4 inducers. If the strong inducer is discontinued the lapatinib dose should be reduced to the indicated dose
  • Other Toxicities: Discontinuation or interruption of dosing with Lapatinib may be considered when patients develop ≥Grade 2 NCI CTCAE toxicity and can be restarted at the standard dose of 1,250 or 1,500 mg/day when the toxicity improves to Grade 1 or less. If the toxicity recurs, then Lapatinib in combination with capecitabine should be restarted at a lower dose (1,000 mg/day) and in combination with letrozole should be restarted at a lower dose of 1,250 mg/day.
  • See manufacturer’s prescribing information for the coadministered product dosage adjustment guidelines in the event of toxicity and other relevant safety information or contraindications.


|offLabelAdultGuideSupport=There is limited information regarding Off-Label Guideline-Supported Use of Lapatinib in adult patients.

|offLabelAdultNoGuideSupport=

Metastatic breast cancer, HER2 overexpression, first-line
  • Paclitaxel 80 mg/m(2) IV once a week for 3 weeks every 4 weeks and either placebo or lapatinib 1500 mg once daily. [1]
Metastatic breast cancer, HER2 overexpression, refractory, monotherapy
  • Oral lapatinib 1500 mg daily [2]
Inflammatory carcinoma of breast, HER2 overexpression, relapsed or refractory
  • Oral lapatinib 1500 mg/day [3]

|fdaLIADPed=There is limited information regarding FDA-Labeled Use of Lapatinib in pediatric patients.


|offLabelPedGuideSupport=There is limited information regarding Off-Label Guideline-Supported Use of Lapatinib in pediatric patients.

|offLabelPedNoGuideSupport=There is limited information regarding Off-Label Non–Guideline-Supported Use of Lapatinib in pediatric patients.

|contraindications=* Lapatinib is contraindicated in patients with known severe hypersensitivity (e.g., anaphylaxis) to this product or any of its components.

|warnings=

Decreased Left Ventricular Ejection Fraction
  • Lapatinib has been reported to decrease LVEF . In clinical trials, the majority (>57%) of LVEF decreases occurred within the first 12 weeks of treatment; however, data on long-term exposure are limited. Caution should be taken if Lapatinib is to be administered to patients with conditions that could impair left ventricular function. LVEF should be evaluated in all patients prior to initiation of treatment with Lapatinib to ensure that the patient has a baseline LVEF that is within the institution’s normal limits. LVEF should continue to be evaluated during treatment with Lapatinib to ensure that LVEF does not decline below the institution’s normal limits.
Hepatotoxicity
  • Hepatotoxicity (ALT or AST >3 times the upper limit of normal and total bilirubin >2 times the upper limit of normal) has been observed in clinical trials (<1% of patients) and postmarketing experience. The hepatotoxicity may be severe and deaths have been reported. Causality of the deaths is uncertain. The hepatotoxicity may occur days to several months after initiation of treatment. Liver function tests (transaminases, bilirubin, and alkaline phosphatase) should be monitored before initiation of treatment, every 4 to 6 weeks during treatment, and as clinically indicated. If changes in liver function are severe, therapy with Lapatinib should be discontinued and patients should not be retreated with Lapatinib.
Diarrhea
  • Diarrhea has been reported during treatment with Lapatinib. The diarrhea may be severe, and deaths have been reported. Diarrhea generally occurs early during treatment with Lapatinib, with almost half of those patients with diarrhea first experiencing it within 6 days. This usually lasts 4 to 5 days. Lapatinib-induced diarrhea is usually low-grade, with severe diarrhea of NCI CTCAE Grades 3 and 4 occurring in <10% and <1% of patients, respectively. Early identification and intervention is critical for the optimal management of diarrhea. Patients should be instructed to report any change in bowel patterns immediately. Prompt treatment of diarrhea with anti-diarrheal agents (such as loperamide) after the first unformed stool is recommended. Severe cases of diarrhea may require administration of oral or intravenous electrolytes and fluids, use of antibiotics such as fluoroquinolones (especially if diarrhea is persistent beyond 24 hours, there is fever, or Grade 3 or 4 neutropenia), and interruption or discontinuation of therapy with Lapatinib.
Interstitial Lung Disease/Pneumonitis
QT Prolongation
Severe Cutaneous Reactions


|clinicalTrials=*Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

  • HER2-Positive Metastatic Breast Cancer: The safety of Lapatinib has been evaluated in more than 12,000 patients in clinical trials. The efficacy and safety of Lapatinib in combination with capecitabine in breast cancer was evaluated in 198 patients in a randomized, Phase 3 trial . Adverse reactions which occurred in at least 10% of patients in either treatment arm and were higher in the combination arm are shown in Table 1.
  • The most common adverse reactions (>20%) during therapy with Lapatinib plus capecitabine were gastrointestinal (diarrhea, nausea, and vomiting), dermatologic (palmar-plantar erythrodysesthesia and rash), and fatigue. *Diarrhea was the most common adverse reaction resulting in discontinuation of study medication.
  • The most common Grade 3 and 4 adverse reactions (NCI CTCAE v3) were diarrhea and palmar-plantar erythrodysesthesia. Selected laboratory abnormalities are shown in Table 2.
This image is provided by the National Library of Medicine.

National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.

  • Decreases in Left Ventricular Ejection Fraction: Due to potential cardiac toxicity with HER2 (ErbB2) inhibitors, LVEF was monitored in clinical trials at approximately 8-week intervals. LVEF decreases were defined as signs or symptoms of deterioration in left ventricular cardiac function that are ≥Grade 3 (NCI CTCAE), or a ≥20% decrease in left ventricular cardiac ejection fraction relative to baseline which is below the institution's lower limit of normal. Among 198 patients who received combination treatment with Lapatinib/capecitabine, 3 experienced Grade 2 and one had Grade 3 LVEF adverse reactions (NCI CTCAE v3). Among 654 patients who received combination treatment with Lapatinib/letrozole, 26 patients experienced Grade 1 or 2 and 6 patients had Grade 3 or 4 LVEF adverse reactions.
  • Hepatotoxicity: Lapatinib has been associated with hepatotoxicity.
  • Interstitial Lung Disease/Pneumonitis: Lapatinib has been associated with interstitial lung disease and pneumonitis in monotherapy or in combination with other chemotherapies

|postmarketing=*The following adverse reactions have been identified during post-approval use of Lapatinib. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

|drugInteractions======Effects of Lapatinib on Drug Metabolizing Enzymes and Drug Transport Systems=====

  • Lapatinib inhibits CYP3A4, CYP2C8, and P-glycoprotein (P-gp, ABCB1) in vitro at clinically relevant concentrations and is a weak inhibitor of CYP3A4 in vivo. Caution should be exercised and dose reduction of the concomitant substrate drug should be considered when dosing Lapatinib concurrently with medications with narrow therapeutic windows that are substrates of CYP3A4, CYP2C8, or P-gp. Lapatinib did not significantly inhibit the following enzymes in human liver microsomes: CYP1A2, CYP2C9, CYP2C19, and CYP2D6 or UGT enzymes in vitro, however, the clinical significance is unknown.
  • Midazolam: Following coadministration of Lapatinib and midazolam (CYP3A4 substrate), 24-hour systemic exposure (AUC) of orally administered midazolam increased 45%, while 24-hour AUC of intravenously administered midazolam increased 22%.
  • Paclitaxel: In cancer patients receiving Lapatinib and paclitaxel (CYP2C8 and P-gp substrate), 24-hour systemic exposure (AUC) of paclitaxel was increased 23%. This increase in paclitaxel exposure may have been underestimated from the in vivo evaluation due to study design limitations.
  • Digoxin: Following coadministration of Lapatinib and digoxin (P-gp substrate), systemic AUC of an oral digoxin dose increased approximately 2.8-fold. Serum digoxin concentrations should be monitored prior to initiation of Lapatinib and throughout coadministration. If digoxin serum concentration is >1.2 ng/mL, the digoxin dose should be reduced by half.
Drugs That Inhibit or Induce Cytochrome P450 3A4 Enzymes
  • Lapatinib undergoes extensive metabolism by CYP3A4, and concomitant administration of strong inhibitors or inducers of CYP3A4 alter lapatinib concentrations significantly . Dose adjustment of lapatinib should be considered for patients who must receive concomitant strong inhibitors or concomitant strong inducers of CYP3A4 enzymes.
  • Ketoconazole: In healthy subjects receiving ketoconazole, a CYP3A4 inhibitor, at 200 mg twice daily for 7 days, systemic exposure (AUC) to lapatinib was increased to approximately 3.6-fold of control and half-life increased to 1.7-fold of control.
  • Carbamazepine: In healthy subjects receiving the CYP3A4 inducer, carbamazepine, at 100 mg twice daily for 3 days and 200 mg twice daily for 17 days, systemic exposure (AUC) to lapatinib was decreased approximately 72%.
Drugs That Inhibit Drug Transport Systems
  • Lapatinib is a substrate of the efflux transporter P-glycoprotein (P-gp, ABCB1). If Lapatinib is administered with drugs that inhibit P-gp, increased concentrations of lapatinib are likely, and caution should be exercised.
Acid-Reducing Agents
  • The aqueous solubility of lapatinib is pH dependent, with higher pH resulting in lower solubility. However, esomeprazole, a proton pump inhibitor, administered at a dose of 40 mg once daily for 7 days, did not result in a clinically meaningful reduction in lapatinib steady-state exposure.

|FDAPregCat=D |useInPregnancyFDA=*Lapatinib can cause fetal harm when administered to a pregnant woman. Based on findings in animals, Lapatinib is expected to result in adverse reproductive effects. Lapatinib administered to rats during organogenesis and through lactation led to death of offspring within the first 4 days after birth.

  • There are no adequate and well-controlled studies with Lapatinib in pregnant women. Women should be advised not to become pregnant when taking Lapatinib. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.
  • Based on findings in animals, Lapatinib can cause fetal harm when administered to a pregnant woman. Lapatinib administered to rats during organogenesis and through lactation led to death of offspring within the first 4 days after birth. When administered to pregnant animals during the period of organogenesis, lapatinib caused fetal anomalies (rats) or abortions (rabbits) at maternally toxic doses. There are no adequate and well-controlled studies with Lapatinib in pregnant women. Women should be advised not to become pregnant when taking Lapatinib. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus.
  • In a study where pregnant rats were dosed with lapatinib during organogenesis and through lactation, at a dose of 120 mg/kg/day (approximately 6.4 times the human clinical exposure based on AUC following 1,250-mg dose of lapatinib plus capecitabine), 91% of the pups had died by the fourth day after birth, while 34% of the 60 mg/kg/day pups were dead. The highest no-effect dose for this study was 20 mg/kg/day (approximately equal to the human clinical exposure based on AUC).
  • Lapatinib was studied for effects on embryo-fetal development in pregnant rats and rabbits given oral doses of 30, 60, and 120 mg/kg/day. There were no teratogenic effects; however, minor anomalies (left-sided umbilical artery, cervical rib, and precocious ossification) occurred in rats at the maternally toxic dose of 120 mg/kg/day (approximately 6.4 times the human clinical exposure based on AUC following 1,250-mg dose of lapatinib plus capecitabine). In rabbits, lapatinib was associated with maternal toxicity at 60 and 120 mg/kg/day (approximately 0.07 and 0.2 times the human clinical exposure, respectively, based on AUC following 1,250-mg dose of lapatinib plus capecitabine) and abortions at 120 mg/kg/day. Maternal toxicity was associated with decreased fetal body weights and minor skeletal variations.

|useInPregnancyAUS=There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Lapatinib in women who are pregnant. |useInLaborDelivery=There is no FDA guidance on use of Lapatinib during labor and delivery. |useInNursing=*It is not known whether lapatinib is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from Lapatinib, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. |useInPed=The safety and effectiveness of Lapatinib in pediatric patients have not been established. |useInGeri=Of the total number of metastatic breast cancer patients in clinical studies of Lapatinib in combination with capecitabine (N = 198), 17% were 65 years of age and older, and 1% were 75 years of age and older. Of the total number of hormone receptor-positive, HER2-positive metastatic breast cancer patients in clinical studies of Lapatinib in combination with letrozole (N = 642), 44% were 65 years of age and older, and 12% were 75 years of age and older. No overall differences in safety or effectiveness were observed between elderly subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. |useInGender=There is no FDA guidance on the use of Lapatinib with respect to specific gender populations. |useInRace=There is no FDA guidance on the use of Lapatinib with respect to specific racial populations. |useInRenalImpair=*Lapatinib pharmacokinetics have not been specifically studied in patients with renal impairment or in patients undergoing hemodialysis. There is no experience with Lapatinib in patients with severe renal impairment. However, renal impairment is unlikely to affect the pharmacokinetics of lapatinib given that less than 2% (lapatinib and metabolites) of an administered dose is eliminated by the kidneys. |useInHepaticImpair=*If Lapatinib is to be administered to patients with severe pre-existing hepatic impairment, dose reduction should be considered . In patients who develop severe hepatotoxicity while on therapy, Lapatinib should be discontinued and patients should not be retreated with Lapatinib.

  • The pharmacokinetics of lapatinib were examined in subjects with pre-existing moderate (n = 8) or severe (n = 4) hepatic impairment (Child-Pugh Class B/C, respectively) and in 8 healthy control subjects. Systemic exposure (AUC) to lapatinib after a single oral 100-mg dose increased approximately 14% and 63% in subjects with moderate and severe pre-existing hepatic impairment, respectively. Administration of Lapatinib in patients with severe hepatic impairment should be undertaken with caution due to increased exposure to the drug. A dose reduction should be considered for patients with severe pre-existing hepatic impairment. In patients who develop severe hepatotoxicity while on therapy, Lapatinib should be discontinued and patients should not be retreated with Lapatinib.

|useInReproPotential=There is no FDA guidance on the use of Lapatinib in women of reproductive potentials and males. |useInImmunocomp=There is no FDA guidance one the use of Lapatinib in patients who are immunocompromised.

|administration=* Oral |monitoring=*Monitor liver function tests before initiation of treatment, every 4 to 6 weeks during treatment, and as clinically indicated. Discontinue and do not restart Lapatinib if patients experience severe changes in liver function tests.

|IVCompat=There is limited information regarding IV Compatibility of Lapatinib in the drug label.

|overdose=*There is no known antidote for overdoses of Lapatinib. The maximum oral doses of lapatinib that have been administered in clinical trials are 1,800 mg once daily. More frequent ingestion of Lapatinib could result in serum concentrations exceeding those observed in clinical trials and could result in increased toxicity. Therefore, missed doses should not be replaced and dosing should resume with the next scheduled daily dose.

  • Asymptomatic and symptomatic cases of overdose have been reported. The doses ranged from 2,500 to 9,000 mg daily and where reported, the duration varied between 1 and 17 days. Symptoms observed include lapatinib-associated events and in some cases sore scalp, sinus tachycardia (with otherwise normal ECG), and/or mucosal inflammation.
  • Because lapatinib is not significantly renally excreted and is highly bound to plasma proteins, hemodialysis would not be expected to be an effective method to enhance the elimination of lapatinib.
  • Treatment of overdose with Lapatinib should consist of general supportive measures.


|drugBox=

Lapatinib00.png
Lapatinib000.gif
Lapatinib
Systematic (IUPAC) name
N-[3-chloro-4-[(3-fluorophenyl)methoxy]phenyl]-6-
[5-[(2-methylsulfonylethylamino)methyl]-2-furyl]
quinazolin-4-amine
Identifiers
CAS number 231277-92-2

388082-78-8 (ditosylate)
ATC code L01XE07
PubChem 208908
DrugBank DB01259
Chemical data
Formula C29H26ClFN4O4S 
Mol. mass 581.058 g/mol
SMILES eMolecules & PubChem
Pharmacokinetic data
Bioavailability Variable, increased with food
Protein binding >99%
Metabolism Hepatic, mostly CYP3A-mediated (minor 2C19 and 2C8 involvement)
Half life 24 hours
Excretion Mostly fecal
Therapeutic considerations
Licence data

EUUS

Pregnancy cat.

D(AU) D(US) D

Legal status

Prescription Only (S4)(AU) ?(CA) POM(UK) -only(US)

Routes Oral

|mechAction=* Lapatinib is a 4-anilinoquinazoline kinase inhibitor of the intracellular tyrosine kinase domains of both Epidermal Growth Factor Receptor (EGFR [ErbB1]) and of Human Epidermal Receptor Type 2 (HER2 [ErbB2]) receptors (estimated Kiapp values of 3nM and 13nM, respectively) with a dissociation half-life of ≥300 minutes. Lapatinib inhibits ErbB-driven tumor cell growth in vitro and in various animal models.

  • An additive effect was demonstrated in an in vitro study when lapatinib and 5-FU (the active metabolite of capecitabine) were used in combination in the 4 tumor cell lines tested. The growth inhibitory effects of lapatinib were evaluated in trastuzumab-conditioned cell lines. Lapatinib retained significant activity against breast cancer cell lines selected for long-term growth in trastuzumab-containing medium in vitro. These in vitro findings suggest non–cross-resistance between these two agents.
  • Hormone receptor-positive breast cancer cells (with ER [Estrogen Receptor] and/or PgR [Progesterone Receptor]) that coexpress the HER2 tend to be resistant to established endocrine therapies. Similarly, hormone receptor-positive breast cancer cells that initially lack EGFR or HER2 upregulate these receptor proteins as the tumor becomes resistant to endocrine therapy.

|structure=* Lapatinib is a small molecule and a member of the 4-anilinoquinazoline class of kinase inhibitors. It is present as the monohydrate of the ditosylate salt, with chemical name N-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy}phenyl)-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furanyl]-4-quinazolinamine bis(4-methylbenzenesulfonate) monohydrate. It has the molecular formula C29H26ClFN4O4S (C7H8O3S)2 H2O and a molecular weight of 943.5. Lapatinib ditosylate monohydrate has the following chemical structure:

File:Lapatinib01.png
This image is provided by the National Library of Medicine.
  • Lapatinib is a yellow solid, and its solubility in water is 0.007 mg/mL and in 0.1N HCl is 0.001 mg/mL at 25°C.
  • Each 250 mg tablet of Lapatinib contains 405 mg of lapatinib ditosylate monohydrate, equivalent to 398 mg of lapatinib ditosylate or 250 mg lapatinib free base.
  • The inactive ingredients of Lapatinib are: Tablet Core: Magnesium stearate, microcrystalline cellulose, povidone, sodium starch glycolate. Coating: Orange film-coat: FD&C yellow No. 6/sunset yellow FCF aluminum lake, hypromellose, macrogol/PEG 400, polysorbate 80, titanium dioxide.

|PD=*The HLA alleles DQA1*02:01 and DRB1*07:01 were associated with hepatotoxicity reactions in a genetic substudy of a monotherapy trial with Lapatinib (n = 1,194). Severe liver injury (ALT >5 times the upper limit of normal, NCI CTCAE Grade 3) occurred in 2% of patients overall; the incidence of severe liver injury among DQA1*02:01 or DRBI*07:01 allele carriers was 8% versus 0.5% in non-carriers. These HLA alleles are present in approximately 15% to 25% of Caucasian, Asian, African, and Hispanic populations and 1% in Japanese populations. Liver function should be monitored in all patients receiving therapy with Lapatinib regardless of genotype.

|PK=

Absorption
  • Absorption following oral administration of Lapatinib is incomplete and variable. Serum concentrations appear after a median lag time of 0.25 hours (range 0 to 1.5 hours). Peak plasma concentrations (Cmax) of lapatinib are achieved approximately 4 hours after administration. Daily dosing of Lapatinib results in achievement of steady state within 6 to 7 days, indicating an effective half-life of 24 hours.
  • At the dose of 1,250 mg daily, steady-state geometric mean (95% confidence interval) values of Cmax were 2.43 mcg/mL (1.57 to 3.77 mcg/mL) and AUC were 36.2 mcg.h/mL (23.4 to 56 mcg.h/mL).
  • Divided daily doses of Lapatinib resulted in approximately 2-fold higher exposure at steady state (steady-state AUC) compared to the same total dose administered once daily.
  • Systemic exposure to lapatinib is increased when administered with food. Lapatinib AUC values were approximately 3- and 4-fold higher (Cmax approximately 2.5- and 3-fold higher) when administered with a low-fat (5% fat-500 calories) or with a high-fat (50% fat-1,000 calories) meal, respectively.
Distribution
  • Lapatinib is highly bound (>99%) to albumin and alpha-1 acid glycoprotein. In vitro studies indicate that lapatinib is a substrate for the transporters breast cancer-resistance protein (BCRP, ABCG2) and P-glycoprotein (P-gp, ABCB1). Lapatinib has also been shown to inhibit P-gp, BCRP, and the hepatic uptake transporter OATP 1B1, in vitro at clinically relevant concentrations.
Metabolism
  • Lapatinib undergoes extensive metabolism, primarily by CYP3A4 and CYP3A5, with minor contributions from CYP2C19 and CYP2C8 to a variety of oxidated metabolites, none of which accounts for more than 14% of the dose recovered in the feces or 10% of lapatinib concentration in plasma.
Elimination
  • At clinical doses, the terminal phase half-life following a single dose was 14.2 hours; accumulation with repeated dosing indicates an effective half-life of 24 hours.
  • Elimination of lapatinib is predominantly through metabolism by CYP3A4/5 with negligible (<2%) renal excretion. Recovery of parent lapatinib in feces accounts for a median of 27% (range 3% to 67%) of an oral dose.
  • Effects of Age, Gender, or Race: Studies of the effects of age, gender, or race on the pharmacokinetics of lapatinib have not been performed.


|nonClinToxic=*Two-year carcinogenicity studies with lapatinib are ongoing.

  • Lapatinib was not clastogenic or mutagenic in the Chinese hamster ovary chromosome aberration assay, microbial mutagenesis (Ames) assay, human lymphocyte chromosome aberration assay or the in vivo rat bone marrow chromosome aberration assay at single doses up to 2,000 mg/kg. However, an impurity in the drug product (up to 4 ppm or 8 mcg/day) was genotoxic when tested alone in both in vitro and in vivo assays.
  • There were no effects on male or female rat mating or fertility at doses up to 120 mg/kg/day in females and 180 mg/kg/day in males (approximately 6.4 times and 2.6 times the expected human clinical exposure based on AUC following 1,250-mg dose of lapatinib plus capecitabine, respectively). The effect of lapatinib on human fertility is unknown. However, when female rats were given oral doses of lapatinib during breeding and through the first 6 days of gestation, a significant decrease in the number of live fetuses was seen at 120 mg/kg/day and in the fetal body weights at ≥60 mg/kg/day (approximately 6.4 times and 3.3 times the expected human clinical exposure based on AUC following 1,250-mg dose of lapatinib plus capecitabine, respectively).

|clinicalStudies======HER2-Positive Metastatic Breast Cancer=====

  • The efficacy and safety of Lapatinib in combination with capecitabine in breast cancer were evaluated in a randomized, Phase 3 trial. Patients eligible for enrollment had HER2 (ErbB2) overexpressing (IHC 3+ or IHC 2+ confirmed by FISH), locally advanced or metastatic breast cancer, progressing after prior treatment that included anthracyclines, taxanes, and trastuzumab.
  • Patients were randomized to receive either Lapatinib 1,250 mg once daily (continuously) plus capecitabine 2,000 mg/m2/day on Days 1-14 every 21 days, or to receive capecitabine alone at a dose of 2,500 mg/m2/day on Days 1-14 every 21 days. The endpoint was time to progression (TTP). TTP was defined as time from randomization to tumor progression or death related to breast cancer. Based on the results of a pre-specified interim analysis, further enrollment was discontinued. Three hundred and ninety-nine (399) patients were enrolled in this study. The median age was 53 years and 14% were older than 65 years. Ninety-one percent (91%) were Caucasian. Ninety-seven percent (97%) had stage IV breast cancer, 48% were estrogen receptor+ (ER+) or progesterone receptor+ (PR+), and 95% were ErbB2 IHC 3+ or IHC 2+ with FISH confirmation. Approximately 95% of patients had prior treatment with anthracyclines, taxanes, and trastuzumab.
  • Efficacy analyses 4 months after the interim analysis are presented in Table 5, Figure 1, and Figure 2.
This image is provided by the National Library of Medicine.
  • At the time of above efficacy analysis, the overall survival data were not mature (32% events). However, based on the TTP results, the study was unblinded and patients receiving capecitabine alone were allowed to cross over to treatment with Lapatinib plus capecitabine. The survival data were followed for an additional 2 years to be mature and the analysis is summarized in Table 6.
This image is provided by the National Library of Medicine.
  • Clinical Studies Describing Limitation of Use: In two randomized trials, Lapatinib-based chemotherapy regimens have been shown to be less effective than trastuzumab-based chemotherapy regimens. The first randomized, open-label study compared the safety and efficacy of Lapatinib in combination with capecitabine relative to trastuzumab in combination with capecitabine in women with HER2-positive metastatic breast cancer (N = 540). The study was stopped early based on the findings of a pre-planned interim analysis showing a low incidence of CNS events (primary endpoint) and superior efficacy of the trastuzumab plus capecitabine. The median progression-free survival was 6.6 months in the group receiving Lapatinib in combination with capecitabine compared with 8.0 months in the group receiving the trastuzumab combination [HR = 1.30 (95% CI: 1.04, 1.64)]. Overall survival was analyzed when 26% of deaths occurred in the group receiving Lapatinib in combination with capecitabine and 22% in the group receiving the trastuzumab combination [HR = 1.34 (95% CI: 0.95, 1.92)].
  • The second randomized, open-label study compared the safety and efficacy of taxane-based chemotherapy plus Lapatinib to taxane-based chemotherapy plus trastuzumab as first-line therapy in women with HER2-positive, metastatic breast cancer (N = 652). The study was stopped early based on findings from a pre-planned interim analysis. The median progression-free survival was 11.3 months in the trastuzumab combination treatment arm compared to 9.0 months in patients treated with Lapatinib in the combination arm for the intent-to-treat population [HR = 1.37 (95% CI: 1.13, 1.65)].
Hormone Receptor-Positive, HER2-Positive Metastatic Breast Cancer
  • The efficacy and safety of Lapatinib in combination with letrozole were evaluated in a double-blind, placebo-controlled, multi-center study. A total of 1,286 postmenopausal women with hormone receptor-positive (ER-positive and/or PgR-positive) metastatic breast cancer, who had not received prior therapy for metastatic disease, were randomly assigned to receive either Lapatinib (1,500 mg once daily) plus letrozole (2.5 mg once daily) (n = 642) or letrozole (2.5 mg once daily) alone (n = 644). Of all patients randomized to treatment, 219 (17%) patients had tumors overexpressing the HER2 receptor, defined as fluorescence in situ hybridization (FISH) ≥2 or 3+ immunohistochemistry (IHC). There were 952 (74%) patients who were HER2-negative and 115 (9%) patients did not have their HER2 receptor status confirmed. The primary objective was to evaluate and compare progression-free survival (PFS) in the HER2-positive population. Progression-free survival was defined as the interval of time between date of randomization and the earlier date of first documented sign of disease progression or death due to any cause.
  • The baseline demographic and disease characteristics were balanced between the two treatment arms. The median age was 63 years and 45% were 65 years of age or older. Eighty-four percent (84%) of the patients were white. Approximately 50% of the HER2-positive population had prior adjuvant/neo-adjuvant chemotherapy and 56% had prior hormonal therapy. Only 2 patients had prior trastuzumab.
  • In the HER2-positive subgroup (n = 219), the addition of Lapatinib to letrozole resulted in an improvement in PFS. In the HER2-negative subgroup, there was no improvement in PFS of the combination of Lapatinib plus letrozole compared to the letrozole plus placebo. Overall response rate (ORR) was also improved with the combination of Lapatinib plus letrozole. The overall survival (OS) data were not mature. Efficacy analyses for the hormone receptor-positive, HER2-positive and HER2-negative subgroups are presented in Table 7 and Figure 3.

|howSupplied=* The 250 mg tablets of Lapatinib are oval, biconvex, orange, and film-coated with GS XJG debossed on one side and are available in:

  • Bottles of 150 tablets: NDC

|storage=*Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. |fdaPatientInfo======Patients should be informed of the following=====

  • Lapatinib has been reported to decrease left ventricular ejection fraction which may result in shortness of breath, palpitations, and/or fatigue. Patients should inform their physician if they develop these symptoms while taking Lapatinib.
  • Lapatinib often causes diarrhea which may be severe in some cases. Patients should be told how to manage and/or prevent diarrhea and to inform their physician immediately if there is any change in bowel patterns or severe diarrhea occurs during treatment with Lapatinib.
  • Lapatinib may interact with many drugs; therefore, patients should be advised to report to their healthcare provider the use of any other prescription or nonprescription medication or herbal products.
  • Lapatinib may interact with grapefruit. Patients should not take Lapatinib with grapefruit products.
  • Lapatinib should be taken at least one hour before or one hour after a meal, in contrast to capecitabine which should be taken with food or within 30 minutes after food.
  • The dose of Lapatinib should be taken once daily. Dividing the daily dose is not recommended.

|alcohol=* Alcohol-Lapatinib interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

|brandNames=* Tykerb® |lookAlike=

|drugShortage=

}}
  1. Guan Z, Xu B, DeSilvio ML, Shen Z, Arpornwirat W, Tong Z; et al. (2013). "Randomized trial of lapatinib versus placebo added to paclitaxel in the treatment of human epidermal growth factor receptor 2-overexpressing metastatic breast cancer.". J Clin Oncol. 31 (16): 1947–53. PMID 23509322. doi:10.1200/JCO.2011.40.5241. 
  2. Moy B, Goss PE (2006). "Lapatinib: current status and future directions in breast cancer.". Oncologist. 11 (10): 1047–57. PMID 17110623. doi:10.1634/theoncologist.11-10-1047. 
  3. Kaufman B, Trudeau M, Awada A, Blackwell K, Bachelot T, Salazar V; et al. (2009). "Lapatinib monotherapy in patients with HER2-overexpressing relapsed or refractory inflammatory breast cancer: final results and survival of the expanded HER2+ cohort in EGF103009, a phase II study.". Lancet Oncol. 10 (6): 581–8. PMID 19394894. doi:10.1016/S1470-2045(09)70087-7. 

Linked-in.jpg