CSRP2BP

Jump to: navigation, search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

CSRP2 binding protein is a protein that in humans is encoded by the CSRP2BP gene.[1]

CSRP2 is a protein containing two LIM domains, which are double zinc finger motifs found in proteins of diverse function. CSRP2 and some related proteins are thought to act as protein adapters, bridging two or more proteins to form a larger protein complex. The protein encoded by this gene binds to one of the LIM domains of CSRP2 and contains an acetyltransferase domain. Although the encoded protein has been detected in the cytoplasm, it is predominantly a nuclear protein. Alternatively spliced transcript variants have been described.[1]

Model organisms

Model organisms have been used in the study of CSRP2BP function. A conditional knockout mouse line, called Csrp2bptm1a(KOMP)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17]

Twenty seven tests were carried out on mutant mice and eight significant abnormalities were observed.[10] Fewer than expected homozygous mutant embryos were identified during gestation. Fewer also survived until weaning. Male homozygous mutant's eyelids fail to open, they had abnormal eye size, a decreased susceptibility to bacterial infection and a decreased body length.[10] Female homozygous mutants had a decreased lean body mass. Animals of both sex also had corneal opacity and spinal abnormalities (including scoliosis and fusion of vertebral arches).[10]

References

  1. 1.0 1.1 "Entrez Gene: CSRP2 binding protein". Retrieved 2011-09-20.
  2. "Neurological assessment data for Csrp2bp". Wellcome Trust Sanger Institute.
  3. "Dysmorphology data for Csrp2bp". Wellcome Trust Sanger Institute.
  4. "DEXA data for Csrp2bp". Wellcome Trust Sanger Institute.
  5. "Radiography data for Csrp2bp". Wellcome Trust Sanger Institute.
  6. "Eye morphology data for Csrp2bp". Wellcome Trust Sanger Institute.
  7. "Clinical chemistry data for Csrp2bp". Wellcome Trust Sanger Institute.
  8. "Salmonella infection data for Csrp2bp". Wellcome Trust Sanger Institute.
  9. "Citrobacter infection data for Csrp2bp". Wellcome Trust Sanger Institute.
  10. 10.0 10.1 10.2 10.3 10.4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  11. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. "International Knockout Mouse Consortium".
  13. "Mouse Genome Informatics".
  14. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  15. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  16. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  17. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

External links

Further reading

Weiskirchen, R.; Gressner, A. M. (2000). "The Cysteine- and Glycine-Rich LIM Domain Protein CRP2 Specifically Interacts with a Novel Human Protein (CRP2BP)". Biochemical and Biophysical Research Communications. 274 (3): 655–663. doi:10.1006/bbrc.2000.3187. PMID 10924333. Wang, Y. -L.; Faiola, F.; Xu, M.; Pan, S.; Martinez, E. (2008). "Human ATAC is a GCN5/PCAF-containing Acetylase Complex with a Novel NC2-like Histone Fold Module That Interacts with the TATA-binding Protein". Journal of Biological Chemistry. 283 (49): 33808–33815. doi:10.1074/jbc.M806936200. PMC 2590711. PMID 18838386. Guelman, S.; Kozuka, K.; Mao, Y.; Pham, V.; Solloway, M. J.; Wang, J.; Wu, J.; Lill, J. R.; Zha, J. (2008). "The Double-Histone-Acetyltransferase Complex ATAC is Essential for Mammalian Development". Molecular and Cellular Biology. 29 (5): 1176–1188. doi:10.1128/MCB.01599-08. PMC 2643826. PMID 19103755. Wang, K.; Zhang, H.; Bloss, C. S.; Duvvuri, V.; Kaye, W.; Schork, N. J.; Berrettini, W.; Hakonarson, H. (2010). "A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa". Molecular Psychiatry. 16 (9): 949–959. doi:10.1038/mp.2010.107. PMID 21079607.



Linked-in.jpg