ATP6V0C

Jump to: navigation, search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

V-type proton ATPase 16 kDa proteolipid subunit is an enzyme that in humans is encoded by the ATP6V0C gene.[1][2][3]

Function

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic site. The V0 domain consists of five different subunits: a, c, c', c", and d. Additional isoforms of many of the V1 and V0 subunit proteins are encoded by multiple genes or alternatively spliced transcript variants. This encoded protein is part of the V0 domain. This gene had the previous symbols of ATP6C and ATP6L.[3]

References

  1. Gillespie GA, Somlo S, Germino GG, Weinstat-Saslow D, Reeders ST (May 1991). "CpG island in the region of an autosomal dominant polycystic kidney disease locus defines the 5' end of a gene encoding a putative proton channel". Proceedings of the National Academy of Sciences of the United States of America. 88 (10): 4289–93. doi:10.1073/pnas.88.10.4289. PMC 51644. PMID 1709739.
  2. van Hille B, Vanek M, Richener H, Green JR, Bilbe G (Nov 1993). "Cloning and tissue distribution of subunits C, D, and E of the human vacuolar H(+)-ATPase". Biochemical and Biophysical Research Communications. 197 (1): 15–21. doi:10.1006/bbrc.1993.2434. PMID 8250920.
  3. 3.0 3.1 "Entrez Gene: ATP6V0C ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c".

External links

Further reading



Linked-in.jpg